Complexity and Vulnerability Analysis of the C. Elegans Gap Junction Connectome

نویسندگان

  • James Kunert-Graf
  • Nikita A. Sakhanenko
  • David J. Galas
چکیده

We apply a network complexity measure to the gap junction network of the somatic nervous system of C. elegans and find that it possesses a much higher complexity than we might expect from its degree distribution alone. This “excess” complexity is seen to be caused by a relatively small set of connections involving command interneurons. We describe a method which progressively deletes these “complexity-causing” connections, and find that when these are eliminated, the network becomes significantly less complex than a random network. Furthermore, this result implicates the previously-identified set of neurons from the synaptic network’s “rich club” as the structural components encoding the network’s excess complexity. This study and our method thus support a view of the gap junction Connectome as consisting of a rather low-complexity network component whose symmetry is broken by the unique connectivities of singularly important rich club neurons, sharply increasing the complexity of the network.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gap junctions in C. elegans: Their roles in behavior and development

The nematode Caenorhabditis elegans utilizes gap junctions in different fashions in virtually all of its cells. This model animal has a surprisingly large number of innexin genes within its genome, and many nematode cell types can express multiple innexins at once, leading to the formation of diverse junction types and enough redundancy to limit the effect of single gene knockdowns on animal de...

متن کامل

The Multilayer Connectome of Caenorhabditis elegans

Connectomics has focused primarily on the mapping of synaptic links in the brain; yet it is well established that extrasynaptic volume transmission, especially via monoamines and neuropeptides, is also critical to brain function and occurs primarily outside the synaptic connectome. We have mapped the putative monoamine connections, as well as a subset of neuropeptide connections, in C. elegans ...

متن کامل

Vulnerability-Based Critical Neurons, Synapses, and Pathways in the Caenorhabditis elegans Connectome

Determining the fundamental architectural design of complex nervous systems will lead to significant medical and technological advances. Yet it remains unclear how nervous systems evolved highly efficient networks with near optimal sharing of pathways that yet produce multiple distinct behaviors to reach the organism's goals. To determine this, the nematode roundworm Caenorhabditis elegans is a...

متن کامل

DOP-2 D2-Like Receptor Regulates UNC-7 Innexins to Attenuate Recurrent Sensory Motor Neurons during C. elegans Copulation.

UNLABELLED Neuromodulation of self-amplifying circuits directs context-dependent behavioral executions. Although recurrent networks are found throughout the Caenorhabditis elegans connectome, few reports describe the mechanisms that regulate reciprocal neural activity during complex behavior. We used C. elegans male copulation to dissect how a goal-oriented motor behavior is regulated by recurr...

متن کامل

Topological Cluster Analysis Reveals the Systemic Organization of the Caenorhabditis elegans Connectome

The modular organization of networks of individual neurons interwoven through synapses has not been fully explored due to the incredible complexity of the connectivity architecture. Here we use the modularity-based community detection method for directed, weighted networks to examine hierarchically organized modules in the complete wiring diagram (connectome) of Caenorhabditis elegans (C. elega...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Entropy

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017